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ABSTRACT 

We define an invariant of measure-theoretic isomorphism for dynamical 

systems, as the growth rate in n of the number  of smMl d-balls around 

c~-n-names necessary to cover most of the system, for any generating 

part i t ion c~. We show that  this rate is essentially bounded if and only if 

the system is a translation of a compact group, and compute it for several 

classes of systems of entropy zero, thus getting examples of growth rates 

in O(n) ,  O(n  k) for k E N, or o ( f ( n ) )  for any given unbounded f ,  and of 

various relationships with the usual notion of language complexity of the 

underlying topological system. 

In recent years, there has been a number of papers about the combinatorial notion 

of symbolic complexity,  and its application to dynamical systems. Given 

a symbolic system, the symbolic complexity function p(n) simply counts the 

number of words of length n in the language of the system; the function p(n), 
or rather its rate of growth when n tends to infinity, is a topological invariant 

of the system, and moreover, when p(n) has some simple forms (bounded, or 

sub-affine), then the system is fullyknown (see [FER2] for a longer discussion). 

Is there a corresponding notion which is invariant by the (much weaker) notion 

of measure-theoretic isomorphism? Of course, it is always possible to code a given 

system (X, T, #) into a symbolic system (X~, T) by using a finite partition c~, and 

to take the complexity of this system; but to get a measure-theoretic invariant, we 
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should need the supremum of these functions over all measurable partitions. This, 

however, is generally not known, except if we restrict ourselves to some "good" 

partitions, with some regularity properties; hence, we need a notion which has 

a continuity property with respect to the usual metric on partitions; this leads 

to the idea of counting, not the number of different a-n-names, but the number 

of ~-d-balls of a-n-names necessary to cover (1 - ~) of the space. This gives a 

quantity K((~, n, e, T), which was defined first by Ratner ([RAT]), though with 

the distance f instead of d; she computed its growth rate for different Cartesian 

powers of the horocycle flow, and showed that they are not Kakutani equivalent. 

More recently, while the present paper was in preparation, this invariant was 

also revived by Katok and Thouvenot ([KAT-THO]), who used it to build some 

actions of Z 2 without Lipschitzian models. 

Here, using the growth rates of the K(a ,  n, c, T), we define, up to equivalence 

when n tends to infinity, two functions P+(n) and PT (n), which are invariant by 

measure-theoretic isomorphism, and computable by using any generating parti- 

tion, and may be seen as two measure-theoretic forms of the complexity function. 

The aim of this paper is not to use these invariants punctually to solve a given 

problem, but to present what should be (hopefully) the beginning of a general 

theory of measure-theoretic complexity. 

This parallels the theory of symbolic complexity, as a particularly simple form 

of the invariants is equivalent to a simple characterization of the system: namely, 

our invariants are essentially bounded, in the sense that the K (a ,  n, ~, T) are 

bounded in n for any e, if and only if the system is isomorphic to a translation 

of a compact group. We show also that,  as could be expected, the measure- 

theoretic complexities are (approximately) in e nh  whenever the system has en- 

tropy h > 0; so the interesting cases are to be found among systems of zero 

entropy. In this category, we have at our disposition some well-known groups of 

examples, the simplest (and, in the author's humble opinion, most useful) ones 

being the substitutions and the rank one systems; hence we proceed to give esti- 

mations for our invariants for these usual systems of entropy zero, and to compute 

them precisely for some sub-classes of systems; this helps to classify them up to 

measure-theoretic isomorphism, and gives examples of systems where the growth 

rates of the K(a, n, e, T) are in O(n), O(n k) for k E N, or o(f(n)) for any given 

unbounded f ;  also, most of these systems having, under their symbolic forms, 

topological complexities in O(n), we see that the measure-theoretic complexities 
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may be equivalent to the topological complexity p(n), or only in O(p(n)), or in 

o((p(n)) and unbounded, or in o((p(n)) and essentially bounded; we show also 

that  our invariants are not complete for measure-theoretic isomorphism. 

ACKNOWLEDGEMENT: The author wishes to thank Bernard Host for many 

interesting discussions, and the referee for substantial improvements to this 

paper. 

1. G e n e r a l i t i e s  

The setting of this paper is the one of ( f ini te)  m e a s u r e - p r e s e r v i n g  

m e a s u r a b l e  d y n a m i c a l  s y s t e m s  on Lebesgue spaces, (X, A, T, #). We refer 

the reader to [COR-FOM-SIN] for example, for any notion not explicitly defined 

in this paper. Equalities between measurable quantities are tacitly assumed to 

hold only u p  to  a se t  o f  m e a s u r e  zero.  E a c h  s y s t e m  will b e  a s s u m e d  to  

b e  e rgod ic .  

P a r t i t i o n s  are always assumed to be finite, and made with measurable sets; for 

technical reasons, we revive the Russian use to denote them by a and other Greek 

letters; the atoms of a parti t ion a are denoted by h i , . . . ,  a t. For a parti t ion a of 

X and a point x E X, the a - n a m e  a(x)  is the bi-infinite sequence an(x)  where 

a~(x) -- i whenever Tnx C a ~. The d i s t a n c e  between two ordered partitions 

a = {a 1 . . . .  ,c~ l } and/3 = {131,...,/~'~}, is defined by 

IVrn 

i=l 

the sets h i + l , . . . , / 3 m + 1 , . . ,  being assumed to be empty. 

A parti t ion a re f ines  a parti t ion a '  if each a tom of a '  is a union of atoms of a.  

We denote by a Y/3 the upper bound of (a,/3) for this partial order. A parti t ion 

a is a g e n e r a t i n g  partition for the system (X, T, #) if the a-algebra generated 

by VnE• Tnc~ separates all points except for a set of measure zero. 

For two sequences a = ( h i , . . . ,  ak) and b = (b l , . . . ,  bk) over a finite alphabet,  

we recall that  

b) = # 3(a, 

Let 7-/be the set of all increasing functions from N to N. Just to fix ideas, we 

choose, and denote by 7-/0, some given scale of functions, for example U(n) = 
anb(logn)Ce dn for any a, b, c, d. 
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We can now proceed by steps towards the definition of measure-theoretic 

complexity: 

Definition 1: For a point x E X, we define 

B(x ,a ,n ,e ,T)  = {y e X:-d((ao(x) . . . .  ,an-l(x)),  (ao(y),... ,an-l(y))) < e}. 

And let K(a, n, e, T) be the smallest number K such that there exists a subset 

of X of measure at least 1 - e covered by at most K balls B(x, a, n, e, T). 

What is dynamically significant is the growth rate of the K(a, n, e, T) for small 

e, and we have to take some supremum of this on the set of partitions of X. There 

are several ways to do this: here, we try to get a precise enough invariant under 

a reasonably synthetic form, which inevitably leads us both to technicalities and 

abuses of notations. 

Definition 2: For any U E 7-/, we say that 

P+T(n) ~U(n)  

whenever 

w e  s a y  

lim lim sup 
~ - - - * 0  n ----~ --I- o o  

K(a,n ,e ,T)  
U(n) 

P+T(n) ~U(n)  

whenever 
l iml imsupK(a,n 'e 'T)  
, - o  n - ~ + ~  g(n) 

the union of these properties will be denoted as 

_<1; 

_>1; 

P&r(n) ~U(n). 

Definition 3: We say that 

PJ, r(n) ~u(n) 

whenever 

we say 

lira lira inf K ( a, n, e, T) 
~-o ,~--.+oo u ( n )  

P:,T(n) ~ V(n) 

<_ I; 
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whenever 
lira lira inf I ( (~ ,  n, e, T) 
~ o  n~+~ U(n) 

the union of these properties will be denoted as 

>_1; 

P~,T(n) ~ U(n). 

Important remark: Our sign ~ has to be interpreted carefully: if P:T(n)  

U(n) and P+T(n) ~ V(n), the only thing we can say of U and V is that,  if 
v(~). U(n) < V(n) for all n large enough, then 1 must be an adherence value of v(~), 

in practice, this will be enough to distinguish whether P+T(n) ~ U(n) for any 

given U, hence, by abuse of language, any such function U will be said to be equal 

to P+T(n) up to equivalence when n -~ +oc; the same will be said for P~,T(n), 

and the P~=(n) anc] P+(n) defined below. Equivalently, we could suppress this 

ambiguity by taking our functions U only in/-/0; this is what we shall do in fact 

in this paper whenever we write a relation with ~, but we preferred not to limit 

a priori the set of functions we may use. 

Definition 4: The u p p e r  m e a s u r e - t h e o r e t i c  c o m p l e x i t y  of the system, de- 

noted by P+(n) ,  is, up to equivalence when n --* +oc (see the important  remark 

above), the 

s u p  PZ (n), 

in the sense that  PT+(n) -< U(n) if and only if P+T(n) ~< U(n) when c~ is any 

parti t ion of X,  and P~(n) >- U(n) if and only if for any V E 7~ such that  
v(~) V(n) < U(n) for n large enough and l i m s u p ~ + o ¢  u(~) < 1, there exists a 

parti t ion a such that  P+T(n) >- V(n). So, again by abuse of notation, we write 

~ s u p  

Definition 5: The lower  m e a s u r e - t h e o r e t i c  c o m p l e x i t y ,  denoted by PT (n), 

is given by 
~ 

in the same sense. 

PROPOSITION l: Ever)" relation .satisfied by P+ (n ) o1" P~ (n ), up to equivalence 

when n ~ +o~, is invariant by measure-theoretic isomorphism. In short, we 

say" that the upper and lower measure-theoretic complexities are invariant by 
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measure-theoretic isomorphism. This means concretely that whenever P+ (n) -~ 

U(n) and P+(n) ~- V(n), with U(n) <_ V(n) for every n large enough and 
~:(n) 

l i m s u p n _ + ~  v(n) < 1, then S and T are not measure-theoretically isomorphic; 

and the same is true if we replace P+ by P - .  

Proof'. Any measure-theoretic isomorphism transforms a measurable parti t ion 

into another measurable partition. | 

LEMMA 1: Pw+(n) ~ supk P+(k,,T(n ) and PT(n) ~ supk P-(k~,r(n ) for any se- 

quence of partitions a (k) increasing to the whole a-algebra A. 

Proof'. If ct (k) increase to .4, then for any measurable parti t ion fl and any e > 0, 

there exist a k and a subpartit ion ? of a (k) such that  I/3 - ~/I < e. The Birkhoff 

ergodic theorem applied to the set Ui/31A'Y i ensures that  for almost every point 

x, and every n, 

d(( /3o(X) , . . . , /3n- l (X) ) , (~o(X) , . . . ,~n_l (X) ) )  < ~. 

Hence, /3 being a fixed partition, for every ¢, for almost every (depending on ~) 

x, for every k bigger than some K(¢), every ~ and every n, 

B(x,  fl, n , 5 +  2e, T) D B(x ,a (k ) ,n ,&T) ,  

which yields the result. | 

COROLLARY 1: I[0~ is a generating partition for (X, r ) ,  P+(n) ~ P : r ( n )  and 

PT (n) ,,~ P~,T (n). 

PROPOSITION 2: 

lim l°g P+(n )  log Pff (n) 
- l i m  - h ( T )  

n--*+~ n n-~+~ n 

where h(T) is the measure-theoretic entropy of the system. 

Proof'. By Shannon-Mc Millan-Breiman theorem (see for example [BIL]), when- 

ever the part i t ion a has entropy h(a,  T) = h < +c~, then we can cover a 

subset of X of measure at least i - e by at most e n(h÷c) sets E~, such that  

e -n(h+c) < lt(Ei) < e -n(h-~), and for any x E E i ,  y E E~, aj(x)  = aj(y)  for 

every 0 < j _< n - 1; hence 

K(a,  n, c, T) ~ e ~(h+¢), 
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and also, for a given word w of length n, the number of words w I with d(w, w I) < c 

is at most (~)(nE) k _< e ~g(~) for some g(e) ~ 0 when e --* 0, and thence 

K(a,  n, e, T) >_ (1 - e)e n(h-~-9(~)). 

Hence P+(n) and PT(n) are dominated by every e n(h+~) and dominate every 

e n(h-~) if h(T) = h > O, and P+(n) and PT(n) are dominated by every e d~, 

d > O, when h(T) = O; for the same reason, P+(n) and PT(n) dominate every 

e dn, d > 0, when h(T) = +ec. | 

Remark: When h(T) = +oc, our invariants are not very interesting to compute; 

they satisfy the relations just above, but also, for any partition a with k elements, 

P+r(n) -~ k ~, hence there is no hope, with finite partitions, to find growth rates 

in e ~2 for example. The domain of interest of the measure-theoretic complexities 

seem to be essentially restricted to systems of entropy zero. 

LEMMA 2: 

P~×T(n) >- P~(n)PT(n ) 

and 

P+xT(n) -~ P+ (n)P+ (n). 

Proo~ By Lemma 1 and because of the properties of the product measure, the 

measure-theoretic complexity of S x T may be computed by taking only partitions 

of the form (~ x /3= (a i x / 3 j , l < i < k , l ~ j _ < l ) .  But then 

B(x,~,n,~,s) × B(y,/3, n,~,T) 

c B ( ( x ,  y), a x/3, n, 2e, S x T) 

cB(x ,  a, n, 2~, S) x B(y,/3, n, 2e, T), 

which yields the result. | 

2. I s o m e t r i e s  

The simplest measure-preserving systems are the isometries of compact spaces, 

or equivalently the translations of compact (Abelian) groups, equipped with the 

Haar measure (see for example [FUR]); this includes both the irrational r o t a -  

t ions ,  and the translations of the groups of p-adic integers, or p-adic o d o m e -  

ters ;  this class of systems is completely characterized by its measure-theoretic 

complexity. 
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PROPOSITION 3: Z is measure-theoretically isomorphic to a translation e r a  com- 
pact group if and only if 

P+(n) -~ U(n) 

for every unbounded U E 7-/, or if  and only if 

PT (n) -~ U(n) 

for every unbounded U E 7-l. 

Proof'. Let T be an isometry of a compact space, equipped with the distance d, 

and a be a parti t ion such that,  if A~ is the set 

{x: d(x, ~ai) < e for some atom ai}, 

proposition is true for 

But such partitions 

of our proposition. 

we have p(A~) < Ke for some K.  

We cover X by L(e) open balls (for the distance d) of radius e /2K;  then, if x 

and y are in the same ball, then d(Tnx, T~y) < e for every n; hence, applying 

the Birkhoff ergodic theorem to the set A~/K, we get for each N big enough, 

after restricting x and y to a set of measure 1, that  T~x and T~y lie in the 

same atom of a for at least N(1 - e) of the integers n between 0 and N - 1; 

hence K(a, N, ~, T) < L(e) for all N big enough, and hence the conclusion of the 

P+T(n), and hence also for P~,T(n). 
a generate the whole a-algebra, hence the "only if '  par t  

Reciprocally, suppose PT (n) is dominated by any unbounded function, and let 

c~ be a partition. Then, for any e < 1, K(a, n, c, T) does not tend to infinity with 

n: indeed, if it does so for Co, we can choose Mp such that  K(a, n, co, T) >_ p for 

all n > Mp, hence we have K(a,n ,e ,T)  >_ p for all n > Mp and e < e0, and the 

function U(n) taking the value p for Mp _< n < Mp+l contradicts the hypothesis. 

Suppose now that  T is not measure-theoretically isomorphic to an isometry. 

We may then choose a partition a = {a °, a 1} independent of the Kronecker 

factor with #(a i) > ½. Setting e = ~0, there exists a subset F of N, with density 

one, such that  T~a is e-independent of a for any i in F. 

On the other hand, we choose some K > liminfn__.+~ K(a,n,  e2/5, T); for 

some arbitrarily large N, If(a, N, E2/5, T) _< K; we fix such an N, and cover 

(1 - e2/5) of the space by balls Bi = B(x i ,a ,N,  e2/5, T), 1 <_ i <_ L < I(. 

Then. for every x C Bi, the set o f n  in {0 . . . . .  N -  1} such that  c~(x) = ct~(xi) 
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has cardinali ty at least N(1 - c2/5); and hence, tbr every n inside a set AN C 
L {0 . . . . .  N -  1} of cardinali ty at least N(1 - c ) ,  the set U i= l{x  E Bi: (~,(x) = 

OZn(.~'i) } has measure at least ( 1 -  c/5). But  the L-uple ( a . ( x : )  . . . . .  a . ( X L ) )  

takes less than 2 I'- values while n ranges over AN, so there exists a set CN C AN,  

with at most  2 I" elements, such tha t  for every n E AN,  there exists p(n)  E CN 

such tha t  an(x i )  = (b00(x / )  for every 1 < i < L. Hence for n E AN, 

IT% - TP(')~I = ]2 l~(x) - ~p(.)(x)l < ~. 

EX 

It  follows tha t  there are no E {0 . . . . .  N - 1} and FN C AN such that  the 

cardinali ty of FN is greater than N(1 - c)/2 K and IT'~c~- T ' ° a l  < c for n E FN. 

By translat ion we may then take no = 0. For large N FN nmst  intersect F 

and, for r~ C FN N F, T'c~ is both  ~-independent and c-close to c~, which is a 

contradiction.  | 

Remark:  This property,  tha t  d-compaci ty is equivalent to isometry, is in fact a 

local property;  the above proposit ion is still true if we ask to cover with balls 

B ( x ,  a,  n, c) only a subset of X of fixed measure c > 0. 

3. S u b s t i t u t i o n s  

For the last two parts, we recall some usual notions about  symbolic dynamical  

systems. 

For any sequence u = (u~, n E N) on a finite a lphabet  A, we take T to be 

the one-sided shift, and X the closure of the orbit of u under T; this defines the 

(topological) s y m b o l i c  s y s t e m  associated to u. 

A w o r d  is a finite string wl " "  wk of elements of A; the concatenat ion of  two 

words w and w'  is denoted by ww'.  A word wl . . .wk  is said to o c c u r  at  place i 

in the sequence u if ui = wl  , . . . , ui~-k-1 = wk. 

The l a n g u a g e  L(u)  is the set of all words occurring in u; the c o m p l e x i t y  of 

u is the function p(n)  which associates to each n E N the number  of  words of  

length n in L(u) .  By a slight abuse of notat ion (see the introduction,  or [FER2]), 

we call it also the s y m b o l i c  c o m p l e x i t y  of the associated topological system 

(X, T). 
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LEMMA 3: I f (X ,  T) is a symbolic system associated to a sequence u of complexity 

p(n) , and # is a Borelian T-invariant measure, then (X, T, #) satisfies 

and 

P+ (n) -< p(n). 

Proof'. For the generating partition in cylinders x0 = i, every a-n-name must 

belong to the language of u, hence K(a,  n, e, T) < p(n). | 

We can then define the substitutions: 

Definition 6: A s u b s t i t u t i o n  is an application from an alphabet A into the set 

A* of finite words on A; it extends to a morphism of A* for the concatenation 

by a(ww')  = aw~rw'. 

It is called p r imi t ive  if there exists k such that a occurs in akb for any a C A, 

b E A .  

It is called o f  c o n s t a n t  l eng th  q if aa is of length q for any a C A. 

A fixed po in t  of a is an infinite sequence u with au = u. 

The dynamical system associated to a primitive substitution is the symbolic 

system associated to any of its fixed points, equipped with its unique invariant 

probability; see [QUE] for more details. 

For general primitive substitutions, we know that for any fixed point, p(n) is 

smaller than some cn, c > 0 ([COB]), and hence the measure-theoretic complex- 

ities are at most in O(n); we can give more precise results when the length is 

constant. 

PROPOSITION 4: Let a be a primitive substitution of constant length q on a 

finite alphabet A, with non-periodic fixed points, ( X ,  T, #) the dynamical system 

associated to a; let B be the alphabet we get by identifying a with b whenever 

-d(ana, anb) --~ 0 when n --* +oo; let T be the substitution naturally defined by 

a on B, and p~(n) the complexity of any fixed point of T (this may then be 

computed by the algorithm given in [MOS]). 

Then 7- is trivial (that is: B has only one letter) if  and only i f  the dynamical 

system associated to a is measure-theoretically isomorphic to a translation of a 

compact group. Whenever r is not trivial, 

PT+ (n ) ~ kn 
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where 

and 

0 < k = l imsup p~(n) 
n 

(n) ~ Zn 

where 

0 < I -- lim inf Pr (n). 
rt 

Proof'. It  is shown in [DEK], theorem 7, that  whenever T is trivial, then the 

system associated to a is measure-theoretically isomorphic to a rotation, and 

in [LEM-MEN], lemma 8 (attributed to Host and Parreau), that  the systems 

associated to the substitutions (r and T are measure-theoretically isomorphic. 

Hence the complexities we have to compute are the same as those of the system 

(Y, T, ~,) associated to T. 

Suppose now that  ~- is not trivial; then B has R letters, with R _> 2, and there 

exists c > 0 such that  d(zni, 7nj) > C whenever i C B, j C B, i ¢ j;  in particular, 

the fixed points of ~- are not ultimately periodical. Then temma 9 of [LEM-MEN] 

says that  there exist 6 > 0 and M E N such that,  if u is a fixed point of ~-, if 

w is the word Tn( j l ) ' ' 'Tn( jM)  for some n E N~ j l  C B, . . . ,  jM E B, i f w '  is 

a word appearing in u at place p and if d(w,w r) < 5, then w = w' and p is a 

multiple of qn. Note that  in fact this lemma is not proved in [LEM-MEN]; it is 

an easy generalization of lemma 2.6 in [de J], but only if we take into account the 

non-trivial result in [MOS], that  a primitive substitution of constant length with 

a non ultimately periodical fixed point is recognizable. 

Let p(n), n > 0, be the complexity of the fixed point u. It  is known ([QUE]) 

that  aln < p(n) < a2n for n large enough, with al > 0. 

Let a be the generating partition of (Y, T) whose atoms are the cylinders x0 -- i, 

i • B. We fix some e small enough; then, for any n, K ( a , n , e , T )  < pr(n). 

We choose r such that  (M + 2)q ~ _< n _< (M + 2)q~+1; for almost every point 

x of Y, the a -n-name ao(X) . . .a~_l (x)  is a word of length n in the language 

of u, hence is of the form f ( x ) w l . . . w s d ( x ) ,  where M <_ s <_ q(M + 2), the 

w~ are words of the form T~ji, ji • B, f (x )  is a final section of length ll(X) of 

some T~e(x), e(x) • B, d(x) is an initial section of length 12(x) of some T~h(x), 

h(x) • B. Note that  the a-n-name is determined by the parameters  n, j l  . . . .  ,js, 

e(x), h(x), and either ll(x) or 12(x). 



200 S. F E R E N C Z I  Isr. J. Math .  

Suppose now that c < 5/q(M + 2) and that y E B(x, a, n, e, T); lemma 9 of 

[LEM-MEN] implies that the a-n-name of y must be of the form 

f ( y )w l . . ,  wsd(y), for any final section f(y) of length ll(x) of any T~e(y), e(y) E 

B, and any initial section d(y) of length /2(x) of any T~h(y), h(y) C B; then, 

either x and y have the same a-n-name, or f(x) and f(y) are two different words 

with -d(f(x),f(y)) < en/ll(x), or d(x) and d(y) are two different words with 

-3(d(x), d(y)) < cn/12(x). 
Suppose that f(x) and f(y) are two different words with -d(f(x),.f(y)) < 

cn/ll(x), and take k such that c/q k+l < q(M + 2)c < c/q k. As f(x) and f(y) 
are final sections of words ~-~i, if we cut them from the ends into words of length 

q~-k, we get, for z = x or y, f(z) = f'(z)~-~-kjl(z)... T~-kjt(z), if(Z) being a 

final section of T~-kj0(z), or simply f(z) = f'(z), in which case we put t = 0. 

And the hypotheses force jo(x) ~ Jo(Y), jl(x) = jl(Y), . . . ,  jr(x) = jr(Y). This 

implies that the words ~-ke(x) and Tke(y) have a common final section of exactly 

t letters, and this is true for at most one value (possibly zero) of t for each pair 

of values of (e(x),e(y)). As ll(x) must lie between tq ~-k and (t + 1)q ~-k, this 

gives at most R2q ~-k values for ll(X), and hence, for fixed n, no more than 

2 
R2qr-kRqM+2q +~ ~_ q~RqM+2q+4cn 

C 

possible different a-n names for x. 

Taking into account the symmetric condition on d(x) and d(y), we have found 

some constant K of the system such that the number of possible a-n-names for 

a point x such that there exists y in B(x, a, n, c, T) with a different a-n-name 

is bounded by Ken for every c < co and every n > No(c); also, for the unique 

T-invariant measure v, there exist constants a 3 and a4 such that, for any word 

w of length n in the language of u, 

a3  a4  
- -  < P ( { X :  = W } )  < - -  
n n 

(this is well-known, and easy to prove, first for w = fra, a E B, for example by 

using the matrix of the substitution, and then for any w). Hence, if we want to 

cover a subset of Y of measure at least 1 - ¢ by balls B(x, (~, n, ¢, T), we need to 

cover a subset of Y of measure at least 1 - (Ka4 + 1)c with balls reduced to one 

a-n-name, and we need at least p~(n) - (I(a4 + 1 ) ~ c  such balls: this minoration 

of K(a ,  n, ~, T) yields the stated estimates; note that this implies in particular, 
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because of our proposit ion 3, that,  whenever r is not trivial, the system is not  

isomorphic to a t ranslat ion of a compact  group. | 

Example  1: The Morse system: 

a --~ ab 

b ~ ba 

Then 7 = a (in fact, c = 1 and it is known since [de J] tha t  the Morse subst i tut ion 

satisfies lemma 9 of [LEM-MEN] with L 2 and 6 = ~) and we have only to 

compute  p(n).  This can be computed  by the algori thm given in [MOS], which 

yields p(1) = 2,p(2) = 4,p(3) = 6, and, for n > 3 ,p (n  + 1) - p ( n )  = 2 if 

3.2 k < n < 4.2 k, p(n + 1) - p(n) = 4 otherwise. Hence finally we have 

10n 
P + ( n ) ~  3 

and 

P ~ ( n )  ~ 3n. 

Example  2: The Rudin-Shapiro  system: 

a ~ a b  

b ---* ac 

c --~ db 

d ~ dc 

Then 7 = a,  Pr (n) = 8n - 8 for n large enough, and 

Example  3: 

P~(~) ~ 8~ ~P~(~ ) .  

a 

b --~ 
C ---+ 

d 

has a symbolic complexity satisfying 6n 

measure-theoretic complexity is given by 

associated to the "reduced" subst i tut ion 

a --* aba 

b ~ bac 

c ~ aca 

and satisfies P+ (n) ~ kn  for some 0 < k < 5. 

abc 
bcd 

aba 

cda 

< p(n) < 7n for n large enough. Its 

the symbolic complexity of the sys tem 
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Remark: By taking suitable Cartesian products of substitutions with mutually 

prime constant lengths, we can build ergodic systems, which will have, by Lemma 

2~ measure-theoretic complexities in O(nk), for any natural integer k. 

4. R a n k  one  

Definition 7: A system (X, T, #) is of rank one if for every partition a of X, for 

every positive c, there exist a subset F of X, a positive integer h and a parti t ion 

a '  of X such that  

• F, TF, . . . .  T h - I F  are disjoint, 

• [ a ~ - ( ~ [ < e ,  

• a '  is refined by the partition (F, T F , . . . ,  Th- IF ,  X - uh_~ T~F). 

We refer the reader to [FER3] for a general presentation of these fundamental 

examples of measure-preserving systems of entropy zero. For the general rank one 

system, we have just a majoration of one of the measure-theoretic complexities: 

PROPOSITION 5: For any rank one system ( X,  T, #), 

P~(n)  ~ an 2 

/or any a > 0. 

Proo~ We take a partit ion a, and a sequence e~ of real numbers decreasing 

to zero; by applying the definition of rank one to a and en, we get sequences 

Fn, hn, and a sl ," the non-atomicity of the space implies that ha -~ +c~ and that  

l lh~-I  T~F,~) ~ 0 when n ~ + ~ ,  and, by taking a subsequence, we r/~ = # ( X  - ~i=0 

may assume that h~ is increasing. 

Let a be fixed, and, for a point x in F,~, let sn(x) be the smallest i >_ 0 such 

that  The+ix C Fn; we have s~(x) < ah~ on a subset G~ of F~ of relative measure 

at least 1 - ~ / a ;  let H~ = uh=~o 1TiG,~. 

Let now y be a point of H,~; then, if y = T~x, for x E Gn, its c~-hn-name 

depends only on i, which takes hn values, and s~(x), which takes at most ahn 

values; hence afor t ior i  

K(a~ ,  h,~, (1 + 1 / a ) ~ ,  T)  < ah 2 
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and hence by a standard argument K ( a ,  hn, V/~n+ (1 + 1/a)~n, T)  < ah2n; which 

proves our proposition. | 

To get a precise estimate, we need to know the exact definition of the system; 

we show how it works for the first and most famous example of rank one systems. 

Deiinition 8: The Chacon system (X, T, p) is the shift on the set of sequences 

(x~), n E N, such that  for every s < t there exists m such that  x s . . . x t  is a 

subword of B,~, where Bn+l = B ~ B ~ I B ~ ,  B0 = 0, equipped with its unique 

invariant probability; see for example [FER1] for more details. 

This definition implies that  each x in X has a canon ica l  d e c o m p o s i t i o n  into 

blocks Bn: for auy m, x0 '  "- xm is a concatenation of a suffix of B~ followed by 

blocks B~ separated by isolated 1, and any m '  > m gives the same decomposition 

on x 0 . . .  xm; a block B~ in this decomposition is said to o c c u r  in x in c a n o n i c a l  

pos i t i on .  

LEMMA 4: There exists a > 0 such that, i f  a word w occurs in some x C X ,  with 

-d(w, Bn)  < a, then w = Bn and it occurs in the canonical position. 

Proo£" We compute first 3(ODn, DnO) where B~ = ODn; d(0D1,  D10) -- ½, then 

Dn+l = D~OD~IODn, hence 

hn+13(0D~+l, D~+10) = 2hnd(0Dn, Dn0) + h~d(OD~, D~I)  + 1 

= 3h~3(0Dn, D~0) + 2 

as Dn ends by a 0, hence d(0D~, Dn0) is always greater than t 
2 '  

Suppose now that  the lemma is true for n with a replaced by an < ~, and that  

its hypothesis is satisfied by w with a replaced by 

3 n+l - 1 
1 where h~ - - -  is the length of B~. 

an+l = a n -  hn+----l' 2 

Then one of the three component words W o ' " W h ~ - l ,  Wh~ ' ' 'W2hn-1  or 

W2h~+ 1 "" • W3h n is an-close to Bn. Hence it is equal to Bn and occurs in canonical 

positions; but then the other component words can only be Bn or Bn shifted by 

1 Hence our result, starting one, but if any of them is shifted then -d(w, Bn+O > 7" 

from any a0 < 1. | 

PROPOSITION 6: For the Chacon system, 

P (n) ~ ~ P f  (n). 
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Proof." Let a by the generating partition into cylinders x0 = i; the a-n-names 

are words of length n occurring in elements of X. It  is shown in [FER1] that  

there are exactly 2n - 1 such possible names. 

Suppose that  w and w I are two such n-names, with d(w, w I) < e < a / l O  and 

suppose for example that  w = W l " ' w p B n V l " " v q ,  w l " ' W p  being a 

suffix and v l . . . v q  a prefix of Bm;  because of Lemma 4, w ~ can be only w, 

or w2 • • • w p l B ~ v l  • • • Vq, or w l  • • • w p B n l V l  • • • Vq-1, or w2 • • • w p l B n l v l  • • • Vq-1; 

but d ( w l  " ' W p ,  w2" ' "  w p l )  > ~ as we compare a concatenation of Bp with the 

same concatenation of Bp shifted by one, hence w'  = w 2 . . .  w p l B n v l . . ,  vq only 

if p <_ 2ehn. A similar reasoning for the other cases and for other types of words 

w shows eventually that  at most 10en of the possible a-n-names may have some 

e-d-neighbours. 

I t  also easy to see, for example by building the Rokhlin towers for T, that  

each a -n-name corresponds to an a tom of measure lying between c l / n  and c2 /n;  

hence we conclude, like in Proposition 4, that  

2n - K n e  <_ K ( a ,  n, e, T )  <_ 2n,  

and the proposition is proved. | 

COROLLARY 2: There  exis ts  a c o n t i n u u m  o f  non i somorph ic  s y s t e m s  ( X ,  T ,  p) ,  

d is joint  in the  sense o f  Furs tenberg ,  w i th  

p}(n)  ~ 2n~P (n). 

Proof:  We take the systems T(, . )(~) generated (in the same sense as Chacon's 

map) by the blocks B , ,  where B0 = 0 and Bn+l = (Bn)*~l(Bn) s~, with rn = 1, 

2 _< s~ _< L or 2 _< rn _< L, s~ = 1. By making straightforward modifications 

to the proofs of Lemma 4 and Proposition 6, we can prove that  they have all 

the same complexities as Chacon's map, while T(~)(s~) and T(r-)(s-) are disjoint 

= r '  except, if (r~, s~) ( ~, s~) for all n big enough ([FIE] or [deJ-RAH-SWA]). | 

Another class of variants of Chacon's map gives interesting behaviours for the 

lower measure-theoretic complexity, particularly in view of the fact that  the sym- 

bolic complexity of a system is either bounded or greater than n 

([HED-MOR]): 
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PROPOSITION 7: For any fixed unbounded function f ,  there exists a dynamical 

system which is weakly mixing (hence the lower measure-theoretic complexity 

must dominate some unbounded functions) with 

P r  -< f(")" 

Proof: Let T be generated by tile blocks Bn, where Bo = 0 and B . + I  = 
8n  s n  B,, l B .  for some sequence s,~ + +oo. Let a be the partition into cylinders 

x0 = 0 and xo = 1, and let, h,,~ be the length of B,~. 

For a given ¢, let L = L(a,h,~,e,T) >_ I i ( a , h . , e , T )  be such that  the whole 

space X is covered by L balls B(xi,  (*, h . ,  e, T), 1 < i < L. The a - h . - n a m e  of 

xi is some word, denoted by w(ai, ei), made by a suffix of length 0 < a,i _< h .  of 

B .  followed by ei = 0 or ei = 1 letter 1 and then followed by a prefix of B,, of 

length h~ - ai - e:. 

Now, an (e - 2/h,,+ 1)-dense set alnong all the possible (t-h,, + 1-names is nmde 

by all the u,(ai, ei)kw(aj(i),ej(i))S"w(aj,(ii,ej,(i)) s'~-k, 1 < i < L, 1 <_ k <_ s,,. 

where j( i)  can take three values, i, j l(i)  such that  .w(ai, ei) shifted by 1 on the 

left is ~-close to w(aj~(i),ej,(i)), and j2(i) the equivalent with left. replaced by 

right; and j '(i) takes values i, j l(i),  j2(i), and j3(i), j4(i) defined in the same 

way with shifts by 2 instead of shifts by 1. But. also 

~(w(ai,e,)kw(a.j,ej)Snw(aj,,ej,)s~-k k' -k' ) 

< 21 , - 

for fixed i, j ,  j ' .  This allows one to have an arbitrarily slow growth of the 

L(a, hn, ~, T), and hence of the K(a,  h,~, e, T), if s .  grows fast enough. | 

Conjecture: We know that  in general, for rank one systems defined as symbolic 

systems like in the proof of Proposition 5, the symbolic complexity p(n) satisfies 

l im in fn_+~p(n ) /n  2 < +oe,  but we may have l imsup ,_+o~p( 'u ) /n  k = +co 

for any k (see [FER2]). This behaviour should happen also for the measure- 

theoretic complexity, and we conjecture that  the famous Ornstein nfixing rank 

one transformation ([ORN]), while it must satisfy Proposition 5, has a P+(n) 

greater than O(n k) for any k. 
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